Формулы «Оптика. Атомная и ядерная физика»

1. ГЕОМЕТРИЧЕСКАЯ ОПТИКА Угол падения $\angle a = \angle \beta$ углу отражения Закон превомления света $\sin \alpha = n$ Закон превомления света. $\frac{\sin \alpha}{\rho} = n_{11}$ Относительный показатель предомления среды $n_{12} = n_{11}$ Относительный показатель предомления среды $n_{21} = \frac{n_1}{n_1} = \frac{0}{v_2} = \frac{\lambda_1}{\lambda_2}$ Относительный показатель предомления среды $\sin \alpha_o = \frac{1}{n_1} = \frac{v_1}{v_2} = \frac{\lambda_1}{\lambda_2}$ Относительный показатель предомления среды $\sin \alpha_o = \frac{1}{n_1} = \frac{v_1}{v_2} = \frac{\lambda_1}{\lambda_2}$ Предельный угол полного внутреннего отражения света $\pm \frac{1}{F} = \pm \frac{1}{d} \pm \frac{1}{f}$ Формула тонкой линзы $D = \frac{1}{F}$ Отническая сила линзы $T = \frac{H}{h} = \frac{f}{d}$ Увеличение линзы $\Delta = 10$ Отническая разность хода $\Delta = 10$ Отническая разность хода $\Delta = 10$ Условие интерференционного минимума $\Delta = \frac{\ell}{N}$ Условие интерференционного минимума $\Delta = \frac{\ell}{N}$ Период дифракционной решетки $\Delta = \frac{\ell}{N}$ Условие максимумов дифракционной решетки $\Delta = h + \nu$ Энертия кванта электромагнитного минучесного урона в на уронень в электромагнитного водна уронень в электромагнитного на уронень в электромагнитного на уронень в электрома	Формулы «Оптика. Атомная и ядерная физика»	
$ \frac{\sin \alpha}{\sin \beta} = n $ $ \frac{\sin \alpha}{\sin \beta} = n $ $ \frac{n_2}{\sin \beta} = n_{21} $ $ \frac{n_2}{n_1} = n_{21} $ $ \frac{n_2}{n_1} = n_{21} $ $ \frac{n_2}{n_1} = n_{21} $ $ \frac{n_2}{n_2} = \frac{n_2}{n_2} = \frac{n_2}{n_1} = \frac{n_2}{n_1} $ $ \frac{n_2}{n_2} = \frac{n_2}{n_2} = \frac{n_2}{n_1} = \frac{n_2}{n_2} = \frac{n_2}{n_2$		
$\sin \beta = n$ Показатель преломления среды $\frac{n_2}{n_1} = n_{21}$ Относительный показатель преломления двух сред $n = \frac{c}{v}$ Абсолютный показатель преломления среды $n_{21} = \frac{n_2}{n_1} = \frac{v_1}{v_2} = \frac{\lambda_1}{\lambda_2}$ Относительный показатель преломления двух сред преломления двух сред $\sin \alpha_o = \frac{1}{n}$ $\sin \alpha_o = \frac{n_2}{n_1}$ Предельный угол полного внутреннего отражения света $b = \frac{1}{F}$ Оптическая сила линзы $D = \frac{1}{F}$ Оптическая сила линзы $D = \frac{1}{F}$ Увеличение линзы $D = \frac{1}{F}$ Условие интерференционного максимума $\Delta d = n\ell$ Оптическая разность хода $\Delta d = n\ell$ Условие интерференционного максимума $\Delta d = (2k-1)\frac{\lambda}{2}$ Условие интерференционного минимума $d = \frac{\ell}{N}$ Период дифракционной решетки $d \cdot \sin \alpha = k\lambda$ Условие максимумов дифракционной решетки $d \cdot \sin \alpha = k\lambda$ Условие максимумов дифракционной решетки $d \cdot \sin \alpha = k\lambda$ Условие максимумов дифракционной решетки $d \cdot \sin \alpha = k\lambda$ Условие максимумов дифракционной решетки $d \cdot \sin \alpha = k\lambda$ Условие максимумов дифракционной решетки $d \cdot \sin \alpha = k\lambda$ Онтической вванта электр	Угол падения $\angle \alpha = \angle \beta$ углу отражения	Закон отражения света
$\frac{n_2}{n_1} = n_{21} \qquad \qquad$	$\sin \alpha$	
$\frac{n_2}{n_1} = n_{21} \qquad \qquad$	$\frac{1}{\sin \beta} = n$	Показатель преломления среды
$\frac{1}{n_1} = \frac{n_{21}}{n_1} \qquad \qquad$		Относительный показатель
$n_1 = \frac{c}{v}$ Абсолютный показатель преломления среды $n_{21} = \frac{n_2}{n_1} = \frac{v_1}{v_2} = \frac{\lambda_1}{\lambda_2}$ Относительный показатель преломления двух сред $n_{21} = \frac{n_2}{n_1} = \frac{v_1}{v_2} = \frac{\lambda_1}{\lambda_2}$ Предельный угол полного внутреннего отражения света $n_2 = \frac{n_2}{n_1}$ Оптическая сила линзы $n_2 = \frac{n_2}{n_2}$ Оптическая сила линзы $n_3 = \frac{n_2}{n_1}$ Оптическая сила линзы $n_4 = \frac{n_2}{n_1}$ Оптическая сила линзы $n_4 = \frac{n_2}{n_1}$ Оптическая разность хода $n_4 = \frac{n_2}{n_1}$ Условие интерференционного максимума $n_4 = \frac{n_2}{n_1}$ Условие интерференционного максимума $n_4 = \frac{n_2}{n_1}$ Условие интерференционного минимума $n_4 = \frac{n_2}{n_1}$ Оптическая разность хода $n_4 = \frac{n_2}{n_1}$ Условие интерференционного максимума $n_4 = \frac{n_2}{n_1}$ Условие интерференционного минимума $n_4 = \frac{n_4}{n_1}$ Онтика $n_4 = \frac{n_4}{n_1}$ Условие максимумов дифракционной решетки $n_4 = \frac{n_4}{n_1}$ Онтика $n_4 = \frac{n_4}{n_1}$ Онти	$\frac{n_2}{n_2} = n_{21}$	
$n_{21} = \frac{n_2}{n_1} = \frac{\nu_1}{\nu_2} = \frac{\lambda_1}{\lambda_2}$ $n_{21} = \frac{n_2}{n_1} = \frac{\nu_1}{\nu_2} = \frac{\lambda_1}{\lambda_2}$ $\sin \alpha_v = \frac{1}{n}$ $\sin \alpha_v = \frac{1}{n}$ $\sin \alpha_v = \frac{n_2}{n_1}$ $\sin \alpha_v = \frac{n_2}{n_1}$ $\frac{1}{F} = \pm \frac{1}{d} \pm \frac{1}{f}$ $\frac{1}{F} = \frac{1}{f} \pm \frac{1}{f}$	n_1	преломления двух сред
$n_{21} = \frac{n_2}{n_1} = \frac{\nu_1}{\nu_2} = \frac{\lambda_1}{\lambda_2}$ Огносительный показатель преломления двух сред $\sin \alpha_o = \frac{1}{n}$ $\sin \alpha_o = \frac{n_2}{n_1}$ Предельный угол полного внутреннего отражения света $\pm \frac{1}{F} = \pm \frac{1}{d} \pm \frac{1}{f}$ Формула топкой липзы $\pm \frac{1}{F} = \pm \frac{1}{d} \pm \frac{1}{f}$ Оптическая сила линзы $\pm \frac{1}{F} = \frac{H}{h} = \frac{1}{d}$ Увеличение линзы $\pm \frac{1}{F} = \frac{H}{h} = \frac{1}{d}$ Оптическая разность хода $\pm \frac{1}{F} = \frac{H}{h} = \frac{1}{d}$ Условие интерференционного максимума $\pm \frac{1}{F} = \frac{1}{F} = \frac{1}{F}$ Оптическая разность хода $\pm \frac{1}{F} = \frac{1}{F} $	c	Абсолютный показатель
$\sin lpha_o = rac{1}{n}$ $\sin lpha_o = rac{n_2}{n_1}$ Предельный угол полного внутреннего отражения света $\pm rac{1}{F} = \pm rac{1}{d} \pm rac{1}{f}$ Формула тонкой линзы $D = rac{1}{F}$ Оптическая сила линзы $D = rac{1}{F}$ Увеличение линзы $D = rac{1}{F}$ Увеличение линзы $D = rac{1}{F}$ Оптическая разность хода $D = rac{1}{N}$ Оптическая разность хода $D = N$ Оптическая разность зонь и частоты зонь уголь в ванта при переходе из энергетического уровня п на уровень толь в торой постулат Бора $D = N$ Оптическая разность уголь	1	преломления среды
$\sin lpha_o = rac{1}{n}$ $\sin lpha_o = rac{n_2}{n_1}$ Предельный угол полного внутреннего отражения света $\pm rac{1}{F} = \pm rac{1}{d} \pm rac{1}{f}$ Формула тонкой линзы $D = rac{1}{F}$ Оптическая сила линзы $D = rac{1}{F}$ Увеличение линзы $D = rac{1}{F}$ Увеличение линзы $D = rac{1}{F}$ Оптическая разность хода $D = rac{1}{N}$ Оптическая разность хода $D = N$ Оптическая разность зонь и частоты зонь уголь в ванта при переходе из энергетического уровня п на уровень толь в торой постулат Бора $D = N$ Оптическая разность уголь	n D λ	Относительный показатель
$\sin lpha_o = rac{1}{n}$ $\sin lpha_o = rac{n_2}{n_1}$ Предельный угол полного внутреннего отражения света $\pm rac{1}{F} = \pm rac{1}{d} \pm rac{1}{f}$ Формула тонкой линзы $D = rac{1}{F}$ Оптическая сила линзы $D = rac{1}{F}$ Увеличение линзы $D = rac{1}{F}$ Увеличение линзы $D = rac{1}{F}$ Оптическая разность хода $D = rac{1}{N}$ Оптическая разность хода $D = N$ Оптическая разность зонь и частоты зонь уголь в ванта при переходе из энергетического уровня п на уровень толь в торой постулат Бора $D = N$ Оптическая разность уголь	$n_{21} = \frac{n_2}{n} = \frac{n_1}{n} = \frac{n_1}{n}$	
$\sin lpha_o = rac{1}{n}$ $\sin lpha_o = rac{n_2}{n_1}$ Предельный угол полного внутреннего отражения света $\pm rac{1}{F} = \pm rac{1}{d} \pm rac{1}{f}$ Формула тонкой линзы $D = rac{1}{F}$ Оптическая сила линзы $D = rac{1}{F}$ Увеличение линзы $D = rac{1}{F}$ Увеличение линзы $D = rac{1}{F}$ Оптическая разность хода $D = rac{1}{N}$ Оптическая разность хода $D = N$ Оптическая разность зонь и частоты зонь уголь в ванта при переходе из энергетического уровня п на уровень толь в торой постулат Бора $D = N$ Оптическая разность уголь	n_1 U_2 λ_2	
	n_2	Предельный угол полного внутреннего
	$\sin \alpha_o = - \qquad \sin \alpha_o = - \frac{-}{n}$	отражения света
		Φοριαντο πονγιού πνινον κ
	$\pm \frac{1}{\pm} = \pm \frac{1}{\pm} \pm \frac{1}{\pm}$	Формула тонкои линзы
	$F \qquad d f$	
	_p 1	Оптическая сила линзы
	$D = \frac{1}{F}$	
2. ВОЈНОВАЯ ОПТИКА $\Delta d = n\ell$ Оптическая разность хода $\Delta d = k\lambda = 2k\frac{\lambda}{2}$ Условие интерференционного максимума $\Delta d = (2k-1)\frac{\lambda}{2}$ Условие интерференционного минимума $d = \frac{\ell}{N}$ Период дифракционной решетки $d \cdot \sin \alpha = k\lambda$ Условие максимумов дифракционной решетки 3. КВАНТОВАЯ ОПТИКА $E = h \cdot v$ Энергия кванта электромагнитного излучения (фотона) $p = \frac{hv}{c}$ $p = \frac{h}{\lambda}$ $p = m \cdot c$ Связь скорости, длины волны и частоты электромагнитной волны (света) Энергия кванта при переходе из энергетического уровия п на уровень т. Второй постулат Бора $\lambda_E = \frac{h}{p} = \frac{h}{m \cdot v}$ Длина волны де Бройля $hv = A_{sax} + E_{saw}$ Уравнение Эйнштейна для фотоэффекта Связь работы электрического поля и кинстической энергии фотоэлектрона Красная гранция фотоэффекта Красная гранция фотоэффекта	H f	Vрепичение пинзы
2. ВОЈНОВАЯ ОПТИКА $\Delta d = n\ell$ Оптическая разность хода $\Delta d = k\lambda = 2k\frac{\lambda}{2}$ Условие интерференционного максимума $\Delta d = (2k-1)\frac{\lambda}{2}$ Условие интерференционного минимума $d = \frac{\ell}{N}$ Период дифракционной решетки $d \cdot \sin \alpha = k\lambda$ Условие максимумов дифракционной решетки 3. КВАНТОВАЯ ОПТИКА $E = h \cdot v$ Энергия кванта электромагнитного излучения (фотона) $p = \frac{hv}{c}$ $p = \frac{h}{\lambda}$ $p = m \cdot c$ Связь скорости, длины волны и частоты электромагнитной волны (света) Энергия кванта при переходе из энергетического уровия п на уровень т. Второй постулат Бора $\lambda_E = \frac{h}{p} = \frac{h}{m \cdot v}$ Длина волны де Бройля $hv = A_{sax} + E_{saw}$ Уравнение Эйнштейна для фотоэффекта Связь работы электрического поля и кинстической энергии фотоэлектрона Красная гранция фотоэффекта Красная гранция фотоэффекта	$\Gamma = \frac{\Pi}{I} = \frac{J}{I}$	5 Besin terme similable
	Ti Ci	
$d \cdot \sin \alpha = k\lambda$ Условие максимумов дифракционной решетки $E = h \cdot v$ Условие максимумов дифракционной решетки $E = h \cdot v$ Энергия кванта электромагнитного излучения (фотона) $p = \frac{hv}{c} \qquad p = \frac{h}{\lambda} \qquad p = m \cdot c$ Связь скорости, длины волны и частоты электромагнитной волны (света) $hv = E_n - E_m$ Энергия кванта при переходе из энергетического уровня п на уровень т. Второй постулат Бора $\lambda_{\mathcal{B}} = \frac{h}{p} = \frac{h}{m \ v}$ Уравнение Эйнштейна для фотоэффекта $\frac{mv_{\text{max}}^2}{2} = eU_{\mathcal{I}}$ Связь работы электрического поля и кинетической энергии фотоэлектрона	2. ВОЛНОВА	АЯ ОПТИКА
$d \cdot \sin \alpha = k\lambda$ Условие максимумов дифракционной решетки $E = h \cdot v$ Условие максимумов дифракционной решетки $E = h \cdot v$ Энергия кванта электромагнитного излучения (фотона) $p = \frac{hv}{c} \qquad p = \frac{h}{\lambda} \qquad p = m \cdot c$ Связь скорости, длины волны и частоты электромагнитной волны (света) $hv = E_n - E_m$ Энергия кванта при переходе из энергетического уровня п на уровень т. Второй постулат Бора $\lambda_{\mathcal{B}} = \frac{h}{p} = \frac{h}{m \ v}$ Уравнение Эйнштейна для фотоэффекта $\frac{mv_{\text{max}}^2}{2} = eU_{\mathcal{I}}$ Связь работы электрического поля и кинетической энергии фотоэлектрона	$\Delta d = n\ell$	Оптическая разность хода
$d \cdot \sin \alpha = k\lambda$ Условие максимумов дифракционной решетки $E = h \cdot v$ Условие максимумов дифракционной решетки $E = h \cdot v$ Энергия кванта электромагнитного излучения (фотона) $p = \frac{hv}{c} \qquad p = \frac{h}{\lambda} \qquad p = m \cdot c$ Связь скорости, длины волны и частоты электромагнитной волны (света) $hv = E_n - E_m$ Энергия кванта при переходе из энергетического уровня п на уровень т. Второй постулат Бора $\lambda_{\mathcal{B}} = \frac{h}{p} = \frac{h}{m \ v}$ Уравнение Эйнштейна для фотоэффекта $\frac{mv_{\text{max}}^2}{2} = eU_{\mathcal{I}}$ Связь работы электрического поля и кинетической энергии фотоэлектрона	λ λ λ λ λ	Условие интерференционного максимума
$d \cdot \sin \alpha = k\lambda$ Условие максимумов дифракционной решетки $E = h \cdot v$ Условие максимумов дифракционной решетки $E = h \cdot v$ Энергия кванта электромагнитного излучения (фотона) $p = \frac{hv}{c} \qquad p = \frac{h}{\lambda} \qquad p = m \cdot c$ Связь скорости, длины волны и частоты электромагнитной волны (света) $hv = E_n - E_m$ Энергия кванта при переходе из энергетического уровня п на уровень т. Второй постулат Бора $\lambda_{\mathcal{B}} = \frac{h}{p} = \frac{h}{m \ v}$ Уравнение Эйнштейна для фотоэффекта $\frac{mv_{\text{max}}^2}{2} = eU_{\mathcal{I}}$ Связь работы электрического поля и кинетической энергии фотоэлектрона	$\Delta a = \kappa \lambda = 2\kappa \frac{1}{2}$	
$d \cdot \sin \alpha = k\lambda$ Условие максимумов дифракционной решетки $E = h \cdot v$ Условие максимумов дифракционной решетки $E = h \cdot v$ Энергия кванта электромагнитного излучения (фотона) $p = \frac{hv}{c} \qquad p = \frac{h}{\lambda} \qquad p = m \cdot c$ Связь скорости, длины волны и частоты электромагнитной волны (света) $hv = E_n - E_m$ Энергия кванта при переходе из энергетического уровня п на уровень т. Второй постулат Бора $\lambda_{\mathcal{B}} = \frac{h}{p} = \frac{h}{m \ v}$ Уравнение Эйнштейна для фотоэффекта $\frac{mv_{\text{max}}^2}{2} = eU_{\mathcal{I}}$ Связь работы электрического поля и кинетической энергии фотоэлектрона	2	Vсловие интерференционного минимума
$d \cdot \sin \alpha = k\lambda$ Условие максимумов дифракционной решетки $E = h \cdot v$ Условие максимумов дифракционной решетки $E = h \cdot v$ Энергия кванта электромагнитного излучения (фотона) $p = \frac{hv}{c} \qquad p = \frac{h}{\lambda} \qquad p = m \cdot c$ Связь скорости, длины волны и частоты электромагнитной волны (света) $hv = E_n - E_m$ Энергия кванта при переходе из энергетического уровня п на уровень т. Второй постулат Бора $\lambda_{\mathcal{B}} = \frac{h}{p} = \frac{h}{m \ v}$ Уравнение Эйнштейна для фотоэффекта $\frac{mv_{\text{max}}^2}{2} = eU_{\mathcal{I}}$ Связь работы электрического поля и кинетической энергии фотоэлектрона	$\Delta d = (2k-1)\frac{\pi}{2}$	у оповне интерференционного ининизума
решетки З. КВАНТОВАЯ ОПТИКА $E = h \cdot v$ Энергия кванта электромагнитного излучения (фотона) $p = \frac{hv}{c}$ $p = \frac{h}{\lambda}$ Импульс фотона $c = \lambda v$ Связь скорости, длины волны и частоты электромагнитной волны (света) Энергия кванта при переходе из энергетического уровня п на уровень т. Второй постулат Бора $\lambda_E = \frac{h}{p} = \frac{h}{m \ v}$ Длина волны де Бройля $hv = A_{\text{вых}} + E_{\text{кин}}$ Уравнение Эйнштейна для фотоэффекта $\frac{mv_{\text{max}}^2}{2} = eU$, Связь работы электрического поля и кинетической энергии фотоэлектрона	2	Пантан жүйн амимий жүү жүү жүү
решетки З. КВАНТОВАЯ ОПТИКА $E = h \cdot v$ Энергия кванта электромагнитного излучения (фотона) $p = \frac{hv}{c}$ $p = \frac{h}{\lambda}$ Импульс фотона $c = \lambda v$ Связь скорости, длины волны и частоты электромагнитной волны (света) Энергия кванта при переходе из энергетического уровня п на уровень т. Второй постулат Бора $\lambda_E = \frac{h}{p} = \frac{h}{m \ v}$ Длина волны де Бройля $hv = A_{\text{вых}} + E_{\text{кин}}$ Уравнение Эйнштейна для фотоэффекта $\frac{mv_{\text{max}}^2}{2} = eU$, Связь работы электрического поля и кинетической энергии фотоэлектрона	$d = \frac{\ell}{}$	период дифракционной решетки
решетки З. КВАНТОВАЯ ОПТИКА $E = h \cdot v$ Энергия кванта электромагнитного излучения (фотона) $p = \frac{hv}{c}$ $p = \frac{h}{\lambda}$ Импульс фотона $c = \lambda v$ Связь скорости, длины волны и частоты электромагнитной волны (света) Энергия кванта при переходе из энергетического уровня п на уровень т. Второй постулат Бора $\lambda_E = \frac{h}{p} = \frac{h}{m \ v}$ Длина волны де Бройля $hv = A_{\text{вых}} + E_{\text{кин}}$ Уравнение Эйнштейна для фотоэффекта $\frac{mv_{\text{max}}^2}{2} = eU$, Связь работы электрического поля и кинетической энергии фотоэлектрона	N	
3. КВАНТОВАЯ ОПТИКА $E = h \cdot v$ Энергия кванта электромагнитного излучения (фотона) $p = \frac{hv}{c}$ $p = \frac{h}{\lambda}$ Импулье фотона $c = \lambda v$ Связь скорости, длины волны и частоты электромагнитной волны (света) $hv = E_n - E_m$ Энергия кванта при переходе из энергетического уровня п на уровень т. Второй постулат Бора $\lambda_E = \frac{h}{p} = \frac{h}{m \ v}$ Длина волны де Бройля $hv = A_{\text{вых}} + E_{\text{ким}}$ Уравнение Эйнштейна для фотоэффекта Связь работы электрического поля и кинетической энергии фотоэлектрона	$d \cdot \sin \alpha = k\lambda$	Условие максимумов дифракционной
$E = h \cdot v$ $p = \frac{hv}{c} \qquad p = \frac{h}{\lambda} \qquad p = m \cdot c$ $C = \lambda v$ $hv = E_n - E_m$ $\lambda_{\mathcal{B}} = \frac{h}{p} = \frac{h}{m \ v}$ $D = \frac{h}{\lambda} \qquad D = m \cdot c$ $C = \lambda v$ $C = \lambda v$ $C = \lambda v$ $D = \frac{h}{\lambda} \qquad D = m \cdot c$ $D = \frac{h}{\lambda} \qquad D = $		решетки
$E = h \cdot v$ $p = \frac{hv}{c} \qquad p = \frac{h}{\lambda} \qquad p = m \cdot c$ $C = \lambda v$ $hv = E_n - E_m$ $\lambda_{\mathcal{B}} = \frac{h}{p} = \frac{h}{m \ v}$ $D = \frac{h}{\lambda} \qquad D = m \cdot c$ $C = \lambda v$ $C = \lambda v$ $C = \lambda v$ $D = \frac{h}{\lambda} \qquad D = m \cdot c$ $D = \frac{h}{\lambda} \qquad D = $		
$p = \frac{hv}{c} \qquad p = \frac{h}{\lambda} \qquad p = m \cdot c \qquad \qquad$	3. КВАНТОВАЯ ОПТИКА	
$p = \frac{hv}{c} \qquad p = \frac{h}{\lambda} \qquad p = m \cdot c \qquad \qquad$	$F = h \cdot \nu$	Энергия кванта электромагнитного
$p = \frac{hv}{c} \qquad p = \frac{h}{\lambda} \qquad p = m \cdot c$ $C = \lambda v$ $C = 3 \lambda v$ $hv = E_n - E_m$ $\lambda_E = \frac{h}{p} = \frac{h}{m \ v}$ $D = \frac{hv}{v}$ $\lambda_E = \frac{h}{p} = \frac{h}{m \ v}$ $D = \frac{hv}{mv}$ $D = \frac{hv}{v}$	L = n	± ±
$hv = E_n - E_m$ Энергия кванта при переходе из энергетического уровня п на уровень т. Второй постулат Бора Длина волны де Бройля $hv = A_{_{GbLX}} + E_{_{KUH}}$ Уравнение Эйнштейна для фотоэффекта $\frac{mv_{_{max}}^{-2}}{2} = eU_{_3}$ Связь работы электрического поля и кинетической энергии фотоэлектрона	hv h	• `•
$hv = E_n - E_m$ Энергия кванта при переходе из энергетического уровня п на уровень т. Второй постулат Бора Длина волны де Бройля $hv = A_{_{GbLX}} + E_{_{KUH}}$ Уравнение Эйнштейна для фотоэффекта $\frac{mv_{_{max}}^{-2}}{2} = eU_{_3}$ Связь работы электрического поля и кинетической энергии фотоэлектрона	$p = \frac{m}{c}$ $p = \frac{m}{c}$ $p = m \cdot c$	The state of the s
$hv = E_n - E_m$ Энергия кванта при переходе из энергетического уровня п на уровень т. Второй постулат Бора Длина волны де Бройля $hv = A_{_{GbLX}} + E_{_{KUH}}$ Уравнение Эйнштейна для фотоэффекта $\frac{mv_{_{max}}^{-2}}{2} = eU_{_3}$ Связь работы электрического поля и кинетической энергии фотоэлектрона	$C = \lambda$	Срад скорости начин возим и нестоли
$hv = E_n - E_m$ Энергия кванта при переходе из энергетического уровня п на уровень т. Второй постулат Бора Длина волны де Бройля $hv = A_{\text{вых}} + E_{\text{кин}}$ Уравнение Эйнштейна для фотоэффекта $\frac{mv_{\text{max}}^{-2}}{2} = eU_{\text{3}}$ Связь работы электрического поля и кинетической энергии фотоэлектрона	$C = \lambda V$	* '
энергетического уровня n на уровень m. Второй постулат Бора Длина волны де Бройля $hv = A_{_{\!S\!o\!L\!X}} + E_{_{\!K\!U\!H}} \qquad $	ı n n	•
$\lambda_{E} = \frac{h}{p} = \frac{h}{m \ \upsilon}$ $hv = A_{_{\text{Bblx}}} + E_{_{\text{KUH}}}$ Уравнение Эйнштейна для фотоэффекта $\frac{m \upsilon_{_{\text{max}}}^{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	$hv = E_n - E_m$	
$\lambda_{E} = \frac{h}{p} = \frac{h}{m \ \upsilon}$ Длина волны де Бройля $hv = A_{_{\text{вых}}} + E_{_{\text{кин}}}$ Уравнение Эйнштейна для фотоэффекта $\frac{m \upsilon_{_{\max}}^{\ \ 2}}{2} = e U_{_{3}}$ Связь работы электрического поля и кинетической энергии фотоэлектрона		1 71
$\lambda_{E} = \frac{1}{p} = \frac{1}{m \ \upsilon}$ $h \nu = A_{_{\text{вых}}} + E_{_{\text{кин}}}$ Уравнение Эйнштейна для фотоэффекта $\frac{m \upsilon_{_{\text{max}}}^{2}}{2} = e U_{_{3}}$ Связь работы электрического поля и кинетической энергии фотоэлектрона		†
$hv = A_{_{\text{вых}}} + E_{_{\text{кин}}}$ Уравнение Эйнштейна для фотоэффекта $\frac{mv_{_{\max}}^{-2}}{2} = eU_{_3}$ Связь работы электрического поля и кинетической энергии фотоэлектрона	$\lambda - \frac{h}{h} - \frac{h}{h}$	Длина волны де Бройля
$hv = A_{_{\text{вых}}} + E_{_{\text{кин}}}$ Уравнение Эйнштейна для фотоэффекта $\frac{mv_{_{\max}}^{-2}}{2} = eU_{_3}$ Связь работы электрического поля и кинетической энергии фотоэлектрона	$p = \frac{1}{p} - \frac{1}{m v}$	
с Красная граница фотоэффекта	·	
с Красная граница фотоэффекта	$h\nu - \Lambda \rightarrow F$	Vnавнение Эйнштейна лля фотоэффекта
с Красная граница фотоэффекта	$nv - R_{bblx} + L_{KUH}$	
с Красная граница фотоэффекта	mv_{max}^2	-
$h v_{\min} = A_{_{\!\scriptscriptstyle Boli\!X}}$ $\lambda_{\max} = rac{c}{v_{\min}}$ Красная граница фотоэффекта	${2} = e U_3$	кинетической энергии фотоэлектрона
$hv_{\min} = A_{\max}$ $\lambda_{\max} = \frac{c}{v_{\min}}$	- -	Красная граница фотоэффекта
$ u_{\mathrm{min}}$	$hv_{\min} = A_{\max}$ $\lambda_{\max} = \frac{c}{c}$	τεραστιών τρατιπιμά φοτοσφφοκτά
	$ u_{\mathrm{min}} $	

Формулы «Оптика. Атомная и ядерная физика»

4. ФИЗИКА АТОМНОГО ЯДРА	
$\alpha = {}_{2}^{4}He$	Альфа частица
$\beta = {}^{0}_{-1}e$	Бета частица
$p = {}_{1}^{1}H$	Протон
$\frac{1}{0}n$	Нейтрон
°7	Гамма лучи
$N = N_o \cdot 2^{-\frac{t}{T_{1/2}}}$	Закон радиоактивного распада
$\Delta m = Z \cdot m_p + (A - Z) \cdot m_n - M_{_{\mathcal{R}}}$	Дефект масс ядра атома
$E_{cs} = \Delta m \cdot c^2$	Энергия связи атомного ядра
$_{Z}^{A}X \rightarrow _{Z-2}^{A-4}Y + _{2}^{4}He$	Правило α распада ядра атома
$_{Z}^{A}X \rightarrow _{Z+1}^{A}Y + _{-1}^{0}e$	Правило eta распада ядра атома
${}^{A_{1}}_{Z_{1}}X + {}^{A_{2}}_{Z_{2}}Y = {}^{A_{3}}_{Z_{3}}C + {}^{A_{4}}_{Z_{4}}D + N {}^{a}_{z}X$	Общая схема ядерной реакции
$A_1 + A_2 = A_3 + A_4 + Na$ $Z_1 + Z_2 = Z_3 + Z_4 + Nz$	Закон сохранения массы и заряда в ядерных реакциях