Формулы «Электродинамика»

1. ЭЛЕКТРОСТАТИКА	
$q_1 + q_2 + q_3 + \dots = const$	Закон сохранения электрического заряда
	Закон Кулона
$F = k \frac{ q_1 \cdot q_2 }{r^2}$ $\vec{E} = \frac{\vec{F}}{q}$	Напряженность электрического поля
$E = k \frac{q}{r^2}$	Напряженность электрического поля точечного заряда
$\varphi = \frac{W}{q}$	Потенциал электрического поля
$\varphi = k \frac{q}{r}$ $\varphi = Ed$	Потенциал электрического поля точечного заряда
	Связь потенциала и напряженности электрического поля
W = qEd	Потенциальная энергия заряда в электрическом поле
$\varphi_1 - \varphi_2 = \frac{A}{q}$	Разность потенциалов
$arphi_1-arphi_2=rac{A}{q}$ $E=rac{arphi_1-arphi_2}{d}$ или $E=rac{U}{d}$ $A=q\;\left(arphi_1-arphi_2 ight)$ или $A=q\cdot U$	Связь напряженности и разности потенциалов напряжения
	Работа электрического поля по перемещению электрического заряда
$A = -\Delta W$	Связь работы электрического поля и изменения потенциальной энергии
$C = \frac{q}{u}$ $C = \frac{\varepsilon \varepsilon_o S}{d}$	Электроемкость по определению
$C = \frac{\varepsilon \varepsilon_o S}{d}$	Электроемкость плоского конденсатора
$C = 4\pi\varepsilon\varepsilon_o R$	Электроемкость сферического проводника
$W = \frac{qU}{2} \qquad W = \frac{CU^2}{2} \qquad W = \frac{q^2}{2C}$	Энергия электрического поля конденсатора
Законы последовательного соединения	Законы параллельного соедин Ст
конденсаторов $q_1=q_2=q_{oбuq}$ C_1	конденсаторов С2
$U_1 + U_2 = U_{o \delta u u}$	$U_{\scriptscriptstyle 1} = U_{\scriptscriptstyle 2} = U_{\scriptscriptstyle o ar o u_{\scriptscriptstyle 4}}$
,	$q_1 + q_2 = q_{o \delta u \iota}$
$\frac{1}{C_{oбiij}} = \frac{1}{C_1} + \frac{1}{C_2} \text{или} C_{oбiij} = \frac{C_1 \cdot C_2}{C_1 + C_2}$	$C_1 + C_2 = C_{o \delta u \mu}$
2. ПОСТОЯННЫЙ	ЭЛЕКТРИЧЕСКИЙ ТОК
$I = \frac{\Delta q}{\Delta t}$	Сила тока по определению
$I = q_o n v S$	Зависимость силы тока от заряда частиц,
	концентрации, скорости частиц и площади поперечного сечения проводника
L	1 . L

Формулы «Электродинамика»

$U = \frac{A}{a}$	Электрическое напряжение по определению
$\mathcal{E} = \frac{A_{cm}}{q}$	Электродвижущая сила источника тока по определению
$R = ho rac{\ell}{S}$	Электрическое сопротивление проводника
$R = \rho \frac{\ell}{S}$ $I = \frac{U}{R}$ $I = \frac{\mathcal{E}}{S}$	Закон Ома для участка цепи
$I = \frac{\mathcal{E}}{R + r}$	Закон Ома для полной цепи
Законы последовательного сопротивления	Законы параллельного соединения проводников
проводников	$U_1=U_2=U_{o \delta u \mu}$ R ₂
$I_{_1}=I_{_2}=I_{_{oar{o}u_{\!$	$I_1 + I_2 = I_{o \delta u q}$
$R_1+R_2=R_{oar{o}u_i}$ Для n одинаковых проводников $R_{oar{o}u_i}=nR$	$rac{1}{R_{o ar{o} u \mu}} = rac{1}{R_1} + rac{1}{R_2}$ или $R_{o ar{o} u \mu} = rac{R_1 \cdot R_2}{R_1 + R_2}$
	Для n одинаковых проводников $R_{o \delta u \mu} = rac{R}{n}$
$P = \frac{Q}{\Delta t}$ $P = I \cdot U$ $P = I^{2} \cdot R$ $P = \frac{U^{2}}{R}$	Мощность постоянного электрического тока
$Q = P \Delta t$ $Q = I \cdot U \cdot \Delta t$ $Q = I^{2} \cdot R \cdot \Delta t$ $Q = \frac{U^{2}}{R} \Delta t$	Работа постоянного электрического тока
$Q = \frac{U^2}{R} \Delta t$ 3. ПЕРЕМЕННЫЙ ЭЛЕКТРИЧЕСКИЙ ТОК И Пейструкцие значение сили тока и	
$I = \frac{I_{\text{max}}}{\sqrt{2}} \qquad \qquad U = \frac{U_{\text{max}}}{\sqrt{2}}$	Действующее значение силы тока и действующее значение напряжения переменного тока
$P = \frac{I_m U_m}{2} = IU$ $X_L = \omega L$	Мощность переменного тока
$X_L = \omega L$	Индуктивное сопротивление катушки в цепи переменного тока
$X_C = \frac{1}{\omega C}$	Емкостное сопротивление конденсатора в цепи переменного тока

Формулы «Электродинамика»

4. ЭЛЕКТРОМАГНЕТИЗМ	
$B = \frac{F}{I \cdot \ell} \qquad B = \frac{M}{I \cdot S}$	Модуль вектора магнитной индукции
$K = \frac{\varepsilon_1}{\varepsilon_2} = \frac{n_1}{n_2}$	Коэффициент повышения трансформатора
$\eta = \frac{I_2 U_2}{I_1 U_1}$	Коэффициент полезного действия трансформатора
$\Phi = BS \cos \alpha$	Магнитный поток
$\Phi = L I$	Магнитный поток катушки индуктивности с током
$W = \frac{L I^{2}}{2}$ $\mathcal{E}_{i} = -\frac{\Delta \Phi}{\Delta t}$ $\mathcal{E}_{si} = -L\frac{\Delta I}{\Delta t}$	Энергия магнитного поля тока
$\mathcal{E}_{i} = -\frac{\Delta \Phi}{\Delta t}$	Закон электромагнитной индукции
$\mathcal{E}_{si} = -L \frac{\Delta I}{\Delta t}$	ЭДС самоиндукции катушки индуктивности
$\mathcal{E} = \upsilon B \ell \cdot \sin \alpha$	ЭДС индукции на концах проводника движущегося в магнитном поле
$F_A = IB\ell \sin \alpha$	Сила Ампера
$F_{\pi} = qB\upsilon\sin\alpha$	Сила Лоренца
$m\frac{\upsilon^2}{R} = Bq\upsilon\sin\alpha$	Уравнение движения заряженной частицы в магнитном поле
$T = 2\pi\sqrt{LC}$	Период колебаний в контуре (формула Томсона)
$\frac{LI_{\text{max}}^2}{2} = \frac{CU_{\text{max}}^2}{2}$	Закон сохранения энергии в колебательном контуре
$q = q_{\text{max}} \cos \omega t$ $u = U_{\text{max}} \cos \omega t$ $i = q' = -q_{\text{max}} \omega \sin \omega t$	Уравнение зависимости заряда, напряжения и силы тока от времени при гармонических колебаниях в колебательном контуре